RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. SECOND SEMESTER (January – June), 2012 Mid-Semester Examination, March 2012

Date : 22/03	/2012 MATH	IEMATICS (General)	
Time : 11 am	– 12 noon	Paper : II	Full Marks : 25

1. Answer any one question :

- a) Prove that the equation to the straight lines through the origin each of which makes and angle α with the straight line y = x is $x^2 - 2xy \sec 2\alpha + y^2 = 0$. [5]
- b) Find the angle of rotation of the co-ordinate axes about the origin which will transform the equation $x^2 - y^2 = 4$ to x'y' = 2.

Find the nature of the given equation $11x^2 + 4xy + 14y^2 + 26x + 32y + 23 = 0$. [3+2]

Answer any one question : 2.

a) If \vec{a} and \vec{b} are two unit vectors and θ be the angle between them, then show that $\sin \frac{\theta}{2} = \frac{1}{2} |\vec{a} - \vec{b}|$. [4]

b) Prove that
$$|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$$
. [4]

- Answer any two questions : 3. [2×4] [4]
 - a) Prove that a sequence can have at most one limit.

b) Prove that
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$
 [4]

c) Prove that the series
$$\frac{1}{1\cdot 3} + \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} + \dots$$
 is divergent. [4]

Answer **any one** question : 4.

a)	Find the value of	$\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx$
----	-------------------	---

b) Evaluate $\int \sin^n x \, dx$, where n is an even positive integer greater than 1.

- 5. Answer **any one** question :
 - a) Solve the differential equation : (2x y + 1)dx = (6x 5y + 4)dy
 - b) Solve the differential equation : $(y^2e^x + 2xy)dx x^2dy = 0$

約樂図

[4]

[4]

[1×5]

[1×4]